

First hydrogen refueling station in Bulgaria - lessons learned

Assoc. Prof. Blagoy Burdin

HITMOBIL CENTER OF COMPETENCE

Technology and Systems for Generation, Storage and Utilization of Clean Energy

Goal and purpose:

- ✓ Establishment and development of a Center of Competence, focused on research, experimental development and knowledge transfer in the field of "Technologies and systems for generation, storage and utilization of clean energy".
- ✓ Unique infrastructure for development, testing, optimization and introduction of modern systems for mobility and energy storage at regional and national level.
- Infrastructure optimized to provide the possibility to carry out applied studies in both of their modifications breakthrough and underpinning research.

HITMOBIL CENTER OF COMPETENCE

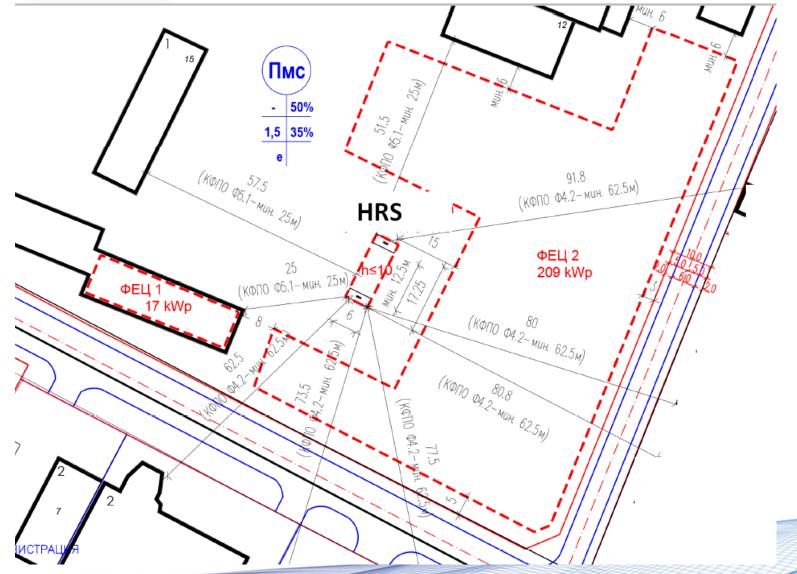
Technology and Systems for Generation, Storage and Utilization of Clean Energy

Structure:

- > Module 1: Industrial research module contrived as an incubator of innovations.
- ➤ Module 2: Experimental development Involves pre-commercial proceedings with Technology Readiness Level (TRL) above 4, such as: scaling of laboratory prototypes, optimization of the regimes of industrial operation, testing and validation of pre-commercial systems for energy conversion and storage.
- ➤ Module 3: Communications and transfer of knowledge ensuring efficient functioning and integration of the competence center as a broad range distributed research and development infrastructure.

...United in 6 Laboratories

Designated area for the location of the facilities – 10 000 m²



Main technological elements of the laboratory:

- > Different photovoltaic panel technologies and layouts
- Wind emulator
- Different energy storage technologies
- > Electric vehicle charging stations and hydrogen refueling station
- > Battery electric (BEV) and hydrogen electric (FCEV) cars

Distances from buildings and facilities.

- Lag of the word hydrogen in the regulations.
- In Bulgaria there are only distances for installations with hydrocarbons.
- HRS consume a lot of land because safety distances
- Concrete walls will increase the budget

➤ Photovoltaic power generation - divided into 6 production plants, including different layouts, single-axis and dual-axis tracker systems, mono- and bifacial panels with total installed power 250kWp

➤ Industrial energy storage technologies — Li-ion; Lead acid and Vanadium redoxflow battery storage systems with total installed capacity 1MWh

- > Hydrogen generation via PEM electrolysis
 - Hydrogen production: 4 Nm3/h (8,5kg/day);
 - Outlet pressure: 30bar;
 - Hydrogen purity: 99,9995%

- Hydrogen refueling station
 - 20" container
 - Pressure: 350 bar; 700 bar;
 - Refueling time (vehicles) < 10min;
 - Hydrogen compression speed: ≈3,5kg/h
 - Hydrogen storage: up to 73kg at 550bars
 - Two inlets: <200bar; <300bar;
 - Certification trough ADR agreement as movable refueling station

➤ The Hydrogen Refueling Station

Own electricity production via solar panels and respectively on-site green hydrogen production

Electricity

Electricity

Hydrogen

Lessons learned

- ➤ Plan very carefully
- > All the consultants say they have experience (but in fact most of them don't)
- ➤ Lag in regulations but local authorities are assisting (most of the times) when full and adequate information
- > Use only proven technologies and companies in the beginning
- Don't buy cheap to save money
- ➤ All people getting used fast to the "dangerous" hydrogen

Lessons learned

- ➤ Safety first need for active and passive safety measures and periodic staff training
- > PEM electrolyser is very useful in Demo projects
- Own production of electricity and green hydrogen is very useful for low system OPEX
 - High electricity price
 - Very high hydrogen price when buy from gas supply companies
- ➤ Don't try to convince everyone to become a supporter of hydrogen technologies

Acknowledgements: The authors kindly acknowledge the financial support of project № BG05M2OP001-1.002-0014 "Center of competence HITMOBIL - Technologies and systems for generation, storage and consumption of clean energy", funded by Operational Programme "Science and Education For Smart Growth" 2014-2020, co-funded by the EU from European Regional Development Fund.

Thank you for your attention!

Blagoy Burdin
Institute of Electrochemistry and Energy Systems
b.burdin@iees.bas.bg

